The Erdös-Sós conjecture says that a graph G on n vertices and number of edges e(G) > n(k − 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ξ(G) of a graph G defined as ξ(G) = min{d(u) + d(v) − 2 : uv ∈ E(G)}. More precisely, we show that a connected graph G with maximum degree ∆(G) ≥ k and minimum edge degree ξ(G) ≥ 2k − 4 contains every tree of k edges if dG (x) + dG (y) ≥ 2k − 4 for all pair x, y of nonadjacent neighbors of a vertex u of dG (u) ≥ k.Aceptado para su publicación en Acta Mathematica Sinica
URL de trackback de esta historia http://zifra.blogalia.com//trackbacks/65721
1 |
|
||
¡Enhorabuena! Cuando tenga un rato, le echaré un vistazo con más atención, a ver si lo cabo de entender. |
2 |
|
||
Perdón: cabo*=acabo |
3 |
|
||
Está clarísimo!!!
|
4 |
|
||
congrats! [yo tengo también uno en esa :-)] |
5 |
|
||
¡Enhorabuena! Eso sí, lo de la Mathematica Sínica suena regular... :) |
< | Abril 2025 | |||||
Lu | Ma | Mi | Ju | Vi | Sa | Do |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |